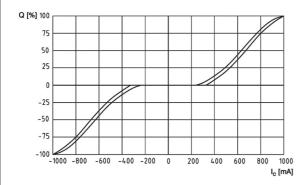


ISO 03 PROPORTIONAL HYDRAULIC VALVES type HD3-PX EX EX-PROOF SOLENOID OPERATED — ATEX

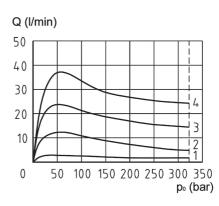
- 4-way Ex-proof solenoid valves, proportional electric control
- ISO 03 interface, directional control
- Solenoids according to ATEX 94/9/CE
- ATEX code/class: CE 0722 / Ex II 2 G EEx d II C T5
- Certificate: CESI 03 ATEX 212 (on request)
- Nominal flow rate: 32 l/min with $\Delta p = 10$ bar
- Maximum pressure (all ports): 250bar
- Hysteresis ≤ 6%
- Emergency pin for manual override
- Mineral oil according to ISO 16/14/12 filtration class or better.

Recommended viscosity range: 10 to 60cSt

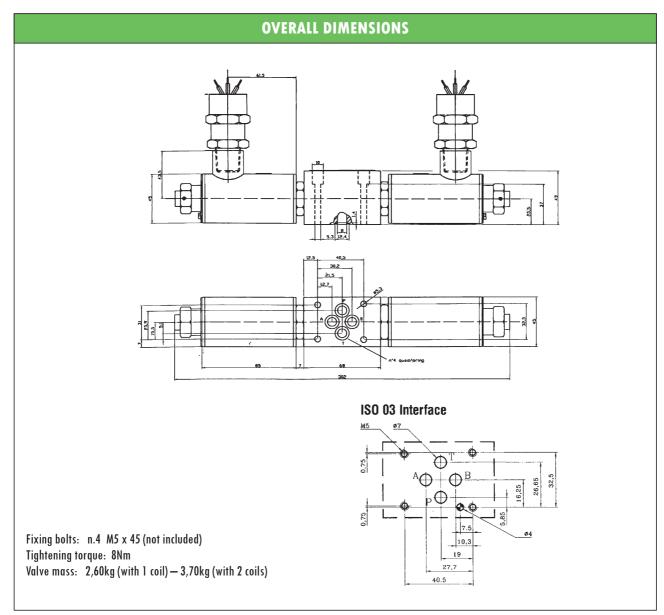


ORDERING CODE				
HD3 — PX — 1PC — R4 / 10				
HD3	ISO 03 4-way directional control valve			
РХ	Proportional electric control, Ex-proof solenoids			
1PC	Spool type and drive arrangement			
R4	24 DC proportional solenoid - R(20° C)=13,4 Ω — IMAX=1,0A - The solenoid must be energized by an electronic driver capable of full control of min and max current value. We recommend UED-M15 type (see table ED-M15)			
10	Drawing			

SPOOL TYPE				
1PML	ML a Transfer of the second of			
1PC				
3РС				


TYPICAL DIAGRAM

Flow characteristics in relation to exciting current for valves HD3-PX in standard configuration, with mineral oil at 35cSt and 50°C with $\Delta p{=}10 bar$


The coil current which initialise the flow through the proportional directional valve can differ with a tolerance range of $\pm 6\%$

Typical p-Q curves of operating limits for HD3-PX valves at different solenoid current values, with mineral oil at 35cSt and 50°C

- 1) 40% solenoid current value 2) 60% solenoid current value
- 3) 80% solenoid current value 4) 100% solenoid current value

Subject to technical and dimensional changes without notice

LINE ASSEMBLY BODY					
1-2	Solenoids according to ATEX 94/9/CE	5	Spool		
3	Springs	6	Ring nut		
4	Body	7	Emergency pin		